StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

Q8Q

Expert-verifiedFound in: Page 32

Book edition
10th Edition

Author(s)
David Halliday

Pages
1328 pages

ISBN
9781118230718

**The following equations give the velocity **** of a particle in four situations: ${\mathbf{\left(}}{\mathbf{a}}{\mathbf{\right)}}{\mathit{v}}{\mathbf{=}}{\mathbf{3}}{\mathbf{}}{\mathbf{\left(}}{\mathbf{b}}{\mathbf{\right)}}{\mathit{v}}{\mathbf{=}}{\mathbf{4}}{{\mathit{t}}}^{{\mathbf{2}}}{\mathbf{+}}{\mathbf{2}}{\mathit{t}}{\mathbf{-}}{\mathbf{6}}{\mathbf{}}{\mathbf{\left(}}{\mathbf{c}}{\mathbf{\right)}}{\mathit{v}}{\mathbf{=}}{\mathbf{3}}{\mathit{t}}{\mathbf{-}}{\mathbf{4}}{\mathbf{}}{\mathbf{\left(}}{\mathbf{d}}{\mathbf{\right)}}{\mathit{v}}{\mathbf{=}}{\mathbf{5}}{{\mathit{t}}}^{{\mathbf{2}}}{\mathbf{-}}{\mathbf{3}}$**** .To which of these situations do the equations of Table 2-1 apply?**

** **

For situations a) and c) the equations of Table 2.1 can be applied.

Table 2.1 with equations of motion with constant acceleration.

**The problem uses the simple concept of acceleration which is the rate of change of velocity with time. The general formula for acceleration can be used to find the situations to which the equations in table 2.1 can be applied.**

Formula:

Acceleration (a)$=\frac{dv}{dt}$

The equations of table 2.1 only apply to the situations in which acceleration is constant.

Acceleration can be defined as,

Acceleration (a)$=\frac{dv}{dt}$

(a) The given velocity fuction is ,v = 3.so,

$a=\frac{d\left(3\right)}{dt}\phantom{\rule{0ex}{0ex}}=0$

Acceleration is constant in this situation.

Therefore, the equations of Table 2.1 can be applied to (a).

(b) The given velocity function is,

role="math" localid="1656997781414" $v=4{t}^{2}+2t-6$

So

role="math" localid="1656997790862" $v=\frac{d\left(4{t}^{2}+2t-6\right)}{dt}\phantom{\rule{0ex}{0ex}}=8t+2$

Acceleration is not constant in this situation.

Therefore, the equations of table 2.1 cannot be applied to (b).

(c)So,

$a=\frac{d(3t-4)}{dt}\phantom{\rule{0ex}{0ex}}=3$

Acceleration is constant in this situation.

Therefore, the equations of Table 2.1 can be applied to (c).

(d) The given velocity function is,

$v=5{t}^{2}-3$ So,

$a=\frac{d(5{t}^{2}-3)}{dt}\phantom{\rule{0ex}{0ex}}=10t$

Acceleration is not constant in this situation.

Therefore, the equations of table 2.1 cannot be applied to (d).

94% of StudySmarter users get better grades.

Sign up for free