• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Chapter 11: Rolling, Torque, and Angular Momentum

Expert-verified
Fundamentals Of Physics
Pages: 295 - 326

Answers without the blur.

Just sign up for free and you're in.

Illustration

92 Questions for Chapter 11: Rolling, Torque, and Angular Momentum

  1. A uniform solid ball rolls smoothly along a floor, then up a ramp inclined at 15.0. It momentarily stops when it has rolled 1.50 malong the ramp. What was its initial speed?

    Found on Page 326
  2. In Fig. 11-60, a constant horizontal force of magnitude 12 N is applied to a uniform solid cylinder by fishing line wrapped around the cylinder. The mass of the cylinder is 10kg, its radius is 0.10 m, and the cylinder rolls smoothly on the horizontal surface. (a) What is the magnitude of the acceleration of the center of mass of the cylinder? (b) What is the magnitude of the angular acceleration of the cylinder about the center of mass? (c) In unit-vector notation, what is the frictional force acting on the cylinder?

    Found on Page 326
  3. A 3.0 kgtoy car moves along an xaxis with a velocity given by v→=-2.0t3i^m/s, with t in seconds. For t>0, what are (a) the angular momentum L→of the car and (b) the torque τ→on the car, both calculated about the origin? What are (c) L→and (d) τ→about the point (2.0m,5.0m,0)? What are (e)L→and (f)τ→about the point(2.0m,-5.0m,0)

    Found on Page 326
  4. A wheel rotates clockwise about its central axis with an angular momentum of 600kg.m2/s. At time t=0, a torque of magnitude 50 N.mis applied to the wheel to reverse the rotation. At what time tis the angular speed zero?

    Found on Page 326
  5. In a playground, there is a small merry-go-round of radius 1.20 mand mass 180 kg. Its radius of gyration (see Problem 79 of Chapter 10) is 91.0 cm.A child of mass 44.0 kgruns at a speed of 3.00 m/salong a path that is tangent to the rim of the initially stationary merry-go-round and then jumps on. Neglect friction between the bearings and the shaft of the merry-go-round. Calculate (a) the rotational inertia of the merry-go-round about its axis of rotation, (b) the magnitude of the angular momentum of the running child about the axis of rotation of the merry-go-round, and (c) the angular speed of the merry-go-round and child after the child has jumped onto the merry-go-round.

    Found on Page 326
  6. A uniform block of granite in the shape of a book has face dimensions of 20 cm and 15 cmand a thickness of 1.2 cm. The density (mass per unit volume) of granite is2.64 g/cm3. The block rotates around an axis that is perpendicular to its face and halfway between its center and a corner. Its angular momentum about that axis is 0.104 kg.m2/s. What is its rotational kinetic energy about that axis?

    Found on Page 326
  7. Two particles, each of mass 2.90×10-4kgand speed 5.46 m/s, travel in opposite directions along parallel lines separated by 4.20 cm. (a) What is the magnitude Lof the angular momentum of the two-particle system around a point midway between the two lines? (b) Is the value different for a different location of the point? If the direction of either particle is reversed, what are the answers for (c) part (a) and (d) part (b)?

    Found on Page 326
  8. A wheel of radius 0.250 m, which is moving initially at 43.0 m/s, rolls to a stop in 225 m. Calculate the magnitudes of its (a) linear acceleration and (b) angular acceleration. (c) Its rotational inertia is 0.155 kg.m2 about its central axis. Find the magnitude of the torque about the central axis due to friction on the wheel.

    Found on Page 326
  9. Wheels Aand Bin Fig. 11-61 are connected by a belt that does not slip. The radius of Bis 3.00 times the radius of A. What would be the ratio of the rotational inertiasIA/IBif the two wheels had (a) the same angular momentum about their central axes? (b) the same rotational kinetic energy?

    Found on Page 326
  10. A 2.50 kgparticle that is moving horizontally over a floor with velocity(3.00m/s)j^ undergoes a completely inelastic collision with a 4.00 kg particle that is moving horizontally over the floor with velocity(4.50m/s)i^. The collision occurs at xycoordinates(-0.500m,-0.100m). After the collision and in unit-vector notation, what is the angular momentum of the stuck-together particles with respect to the origin?

    Found on Page 326

Related Physics Textbooks with Solutions

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.