 Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q108P

Expert-verified Found in: Page 294 ### Fundamentals Of Physics

Book edition 10th Edition
Author(s) David Halliday
Pages 1328 pages
ISBN 9781118230718 # A vinyl record on a turntable rotates at ${\text{33}}\frac{\text{1}}{\text{3}}{\text{rev/min}}$. (a) What is its angular speed in radians per second? What is the linear speed of a point on the record (b) ${\text{15 \hspace{0.17em}cm}}$ and (c) ${\text{7.4 \hspace{0.17em}cm}}$ from the turntable axis?

a) Angular speed is $3.5\text{\hspace{0.17em}rad}/\text{sec}$.

b) Linear speed at $15\text{\hspace{0.17em}cm}$ is $52\text{\hspace{0.17em}cm}/\text{s}$.

c) Linear speed at $7.4\text{cm}$ is $26\text{\hspace{0.17em}}\text{m}/\text{s}$.

See the step by step solution

## Step 1: Given

$\omega =33\frac{1}{3}\text{rev/min}$

## Step 2: Determining the concept

For smaller angular displacements, the linear velocity can be described as the product of the angular velocity and the radius of the circular path in which the Here particle is traveling.Use the formula for linear velocity in terms of radius and angular speed. Linear velocity is written as the product of radius and angular velocity.

${\mathbf{v}}{\mathbf{=}}{\mathbf{r\omega }}$

where, v is velocity, r is radius and ${\mathbf{\omega }}$ is angular velocity.

## Step 3: (a) Determining the angular speed

Here, first convert $33\frac{1}{3}\text{rev}/\text{min}$ into rad/sec as follows:

$\omega =\frac{100}{3}\text{\hspace{0.17em}rev/min}×\frac{0.1047\text{\hspace{0.17em}rad}/\text{sec}}{1\text{\hspace{0.17em}}\text{rev/min}}$

$\omega =3.5\text{\hspace{0.17em}rad}/\text{s}$

Hence,angular speed is $3.5\text{\hspace{0.17em}rad/s}$.

## Step 4: (b) Determining the linear speed at 15  cm

Now, use the following formula to find linear speed:

$v=r\omega$

$v=0.15\text{\hspace{0.17em}m}×3.5\text{\hspace{0.17em}rad}/\text{s}$

$v=0.52\text{\hspace{0.17em}m}$

Hence,linear speed at $15\text{\hspace{0.17em}cm}$ is $52\text{\hspace{0.17em}cm/s}$ .

## Step 5: (c) Determining the linear speed at 7.4  cm

Now, use the following formula to find linear speed:

$v=r\omega$

$v=0.074\text{\hspace{0.17em}m}×3.5\text{rad}/\text{s}$

.$v=0.26\text{\hspace{0.17em}m}/\text{s}$

Hence, linear speed at $7.4\text{\hspace{0.17em}cm}$ is .$26\text{\hspace{0.17em}}\text{m}/\text{s}$

## Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades. 