Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q79P

Expert-verified
Fundamentals Of Physics
Found in: Page 292

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

(a) Show that the rotational inertia of a solid cylinder of mass M and radius R about its central axis is equal to the rotational inertia of a thin hoop of mass M and radius about its central axis. (b) Show that the rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by k=IMThe radius k of the equivalent hoop is called the radius of gyration of the given body.

  1. We can show that rotational inertia of a solid cylinder of mass M and radius R about its central axis is equal to the rotational inertia of a thin hoop of mass M and radius about its central axis.
  2. We can show that the rotational inertia I of any given body of mass M about any given axis is equal to rotational inertia of an equivalent hoop about that axis, if the hoop has same mass M and radius k given byk= IM
See the step by step solution

Step by Step Solution

Step 1: Given

Radius K is
k= IM

Step 2: Understanding the concept

We can use the concept of inertia of the cylinder and the hoop. Also we use the concept of radius of gyration. For the given objects, the masses are the same, so we can find the relation between their radii. Also using the equation of radius of gyration, we find the k in terms of I and M.

Formulae:

I=MR2

I=Mk2

Step 3: (a) To show that the rotational inertia of the solid cylinder about its central axis is equal to that of the thin hoop about its central axis

Rotational inertia of the solid cylinder equal to rotational inertia of thin hoop:

From the book, table 10-2, we get the equation of inertia of cylinder and hoop:

Ic=12MR2

andIh=Mr2

We can write r=Rh

Both the bodies have the same mass, so the inertia will be the same, we get

12MR2=MRh2R22=Rh2Rh=R2

Step 4: (b) To show that the rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given byk=IM

Rotational inertia of any given body is equal to rotational inertia of an equivalent hoop of mass M and radius k:

From the equation of radius of gyration, we can write,

I=Mk2k2=IMk= IM

Most popular questions for Physics Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.