Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

14P

Expert-verified
Fundamentals Of Physics
Found in: Page 541

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

When the temperature of a copper coin is raised by 100OC, its diameter increases by 0.18%. To two significant figures, give the percent increase in

(a) The area of a face,

(b) The thickness,

(c) The volume, and

(d) The mass of the coin.

(e) Calculate the coefficient of linear expansion of the coin.

  1. Percent increase in the area of a face is 0.36%
  2. Percent increase in the thickness is 0.18%
  3. Present increase in the volume is 0.54%
  4. Mass does not depend on thermal expansion.
  5. Coefficient of linear expansion of the coin is 1.8×10-6/Co
See the step by step solution

Step by Step Solution

Step 1: The given data

Initial increase in diameter is by DD=0.18% at data-custom-editor="chemistry" T=100oC

Step 2: Understanding the concept of thermal expansion

When an object's temperature changes, it expands and grows larger, a process known as thermal expansion. Thermal expansion can occur due to an increase in temperature. For the given problem, we have to use the formula for linear expansion to calculate the thermal expansion coefficient. Mass does not depend on thermal expansion.

Formula:

The linear expansion of a body, L=T …(i)

Where, αPb is the coefficient of linear expansion of body, L is length and T is change in temperature

The area of a coin of or radius, R or diameter, D,

A=πR2A=πD22 …(ii)

Step 3: (a) Calculation of percent increase in area of a face

As we differentiate the equation (ii) by D, we can get

dAdt=2πD4dA=πDdD2

Using the equation (ii) for area, we can get, the above equation as:

dAA=2dDD

In terms of , we can write,

AA=2DD

Since area is a two dimensional quantity, so from the above equation, we can conclude that the area increases by the factor 2 i.e. the area increases by 2×0.18%=0.36%

Hence, the percent increase in area of the face is 0.36%

Step 4: (b) Calculation of percent increase in thickness

Since thickness is a one dimensional quantity, so, if 0.18% is the increase in diameter, then 0.18% is the increase in its thickness.

Step 5: (c) Calculation of percent increase in volume

If the linear increase in diameter is 0.18%, then the volume increase is three times of that result, so, Volume increase is given by: 3×0.18%=0.54%

Hence, the percent increase in volume is 0.54%

Step 6: (d) Calculation of percent increase in mass

From the formula of thermal expansion of equation (i), we can conclude that the mass is independent of thermal expansion i.e. total mass always remains constant in expansion.

Step 7: (e) Calculation of coefficient of the linear expansion

From the linear expansion formula of equation (i), we can calculate the thermal expansion coefficient as:

α=DDT

where,

role="math" localid="1661876703196" DD=0.18=0.18×10-2

is the percentage increase in diameter.

And for data-custom-editor="chemistry" T=100oC

role="math" localid="1661876748017" α=0.18×10-2100oC=1.8×10-5/Co

Hence, the coefficient of linear expansion is role="math" localid="1661876763362" 1.8×10-5/Co

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.