• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! 88P

Expert-verified Found in: Page 582 ### Fundamentals Of Physics

Book edition 10th Edition
Author(s) David Halliday
Pages 1328 pages
ISBN 9781118230718 # An ideal gas initially at ${\mathbf{300}}{\text{\hspace{0.17em}}}{\mathbf{K}}{\mathbf{}}$is compressed at a constant pressure of ${\mathbf{25}}{\mathbf{}}{\text{\hspace{0.17em}}}{\mathbf{N}}{\mathbf{/}}{{\mathbf{m}}}^{2}{\mathbf{}}$ from a volume of $\mathbf{3}\mathbf{.}\mathbf{0}\text{\hspace{0.17em}}{\mathbf{m}}^{3}$to a volume of ${\mathbf{1}}{\mathbf{.}}{\mathbf{8}}{\mathbf{}}{{\mathbf{m}}}^{3}{\mathbf{}}$. In the process, ${\mathbf{75}}{\text{\hspace{0.17em}}}{\mathbf{J}}{\mathbf{}}$is lost by the gas as heat. What are (a) the change in internal energy of the gas and (b) the final temperature of the gas?

1. The internal energy change in the gas is$\Delta {E}_{\mathrm{int}}=-45\text{J}$ .
2. The temperature of the gas changes to$180\text{\hspace{0.17em}K}$ .
See the step by step solution

## Step 1: Concept

The process that takes place at constant pressure is called an isobaric process. Using the formulas for work done W in an isobaric process, and the first law of thermodynamics, we can find the change in the internal energy ${{\mathbf{\Delta E}}}_{\mathrm{int}}$ of the gas. Also, by using the ideal gas law in the ratio form, we can find the final temperature ${{\mathbf{T}}}_{2}$of the gas.

1.The work done W in anisobaric process is

${\mathbf{W}}{\mathbf{=}}{\mathbf{p\Delta V}}$

2.The ideal gas law in ratio form is

${{\mathbf{T}}}_{2}{\mathbf{=}}{{\mathbf{T}}}_{1}\left(\frac{{\mathbf{V}}_{2}}{{\mathbf{V}}_{1}}\right)$

3.The change in the internal energy is

${{\mathbf{\Delta E}}}_{\mathrm{int}}{\mathbf{=}}{\mathbf{Q}}{\mathbf{-}}{\mathbf{W}}$

## Step 2: Given Data

1. The pressure .$p=25{\text{\hspace{0.17em}N/m}}^{\text{2}}$
2. The final volume ${V}_{f}=1.8{\text{m}}^{3}$
3. The initial volume .${V}_{i}=3.0{\text{m}}^{3}$
4. The initial temperature ${T}_{1}=300\text{K}$
5. In the process, the energy lost by the gas as heat is$Q=-75\text{J}$ .

## Step 3: Calculations

a.The work done in anisobaricprocess is expressed as-

$W=p\Delta V$

Where p is the pressure and $\Delta V=\left({V}_{f}-{V}_{i}\right)$is change in the volume

Therefore,

$\begin{array}{c}W=p\left({V}_{f}-{V}_{i}\right)\\ =25\text{\hspace{0.17em}N}/{\text{m}}^{2}×\left(1.8{\text{\hspace{0.17em}m}}^{3}-3.0{\text{\hspace{0.17em}m}}^{3}\right)\\ =-30\text{\hspace{0.17em}J}\end{array}$

From the first law of thermodynamics, we have-

$\Delta {E}_{\mathrm{int}}=Q-W$

Where Q is the heat transferred and $\Delta {\text{E}}_{int}$ is the change in the internal energy o the gas. It is given that Q amount of energy leaves the system; therefore, we can consider Q as negative. $Q=-75\text{\hspace{0.17em}J}$

$\begin{array}{c}\Delta {E}_{\mathrm{int}}=-75\text{\hspace{0.17em}J}-\left(-30\text{\hspace{0.17em}J}\right)\\ =-75\text{\hspace{0.17em}J}+\left(30\text{\hspace{0.17em}J}\right)\\ =-45\text{\hspace{0.17em}J}\end{array}$

Internal energy is decreased by $-45\text{\hspace{0.17em}J}$

b.Since the pressure is constant and the number of moles presumed are constant, the ideal gas law can be written as-

$\begin{array}{c}{T}_{2}={T}_{1}\left(\frac{{V}_{2}}{{V}_{1}}\right)\\ =300\text{K}×\left(\frac{1.8\text{\hspace{0.17em}}{\text{m}}^{3}}{3.0\text{\hspace{0.17em}}{\text{m}}^{3}}\right)\\ =180\text{\hspace{0.17em}K}\end{array}$

## Step 4: Conclusion

The change in internal energy of the gas is $-45J$and the final temperature of the gas is $180\text{\hspace{0.17em}K}$. ### Want to see more solutions like these? 