• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Chapter 16: Waves-I

Fundamentals Of Physics
Pages: 444 - 478

Answers without the blur.

Just sign up for free and you're in.


107 Questions for Chapter 16: Waves-I

  1. The equation of a transverse wave traveling along a very long string is y=6.0sin(0.020πx+4.0πt), where x andy are expressed in centimeters and is in seconds. (a) Determine the amplitude,(b) Determine the wavelength, (c)Determine the frequency, (d) Determine the speed, (e) Determine the direction of propagation of the wave, and (f) Determine the maximum transverse speed of a particle in the string. (g)What is the transverse displacement atx = 3.5 cmwhen t = 0.26 s?

    Found on Page 472
  2. If you set up the seventh harmonic on a string, (a) how many nodes are present, and (b) is there a node, antinode, or some intermediate state at the midpoint? If you next set up the sixth harmonic, (c) is its resonant wavelength longer or shorter than that for the seventh harmonic, and (d) is the resonant frequency higher or lower?

    Found on Page 471
  3. A sinusoidal transverse wave of wavelength 20cmtravels along a string in the positive direction of anaxis. The displacement y of the string particle at x=0is given in Figure 16-34 as a function of time t. The scale of the vertical axis is set byys=4.0cmThe wave equation is to be in the formy(x,t)=ymsin(kx±ωt+ϕ). (a) At t=0, is a plot of y versus x in the shape of a positive sine function or a negative sine function? (b) What isym, (c) What isk,(d) What isω, (e) What isφ (f) What is the sign in front ofω, and (g) What is the speed of the wave? (h) What is the transverse velocity of the particle at x=0when t=5.0 s

    Found on Page 472
  4. Figure 16-28 shows phasor diagrams for three situations in which two waves travel along the same string. All six waves have the same amplitude. Rank the situations according to the amplitude of the net wave on the string, greatest first.

    Found on Page 471
  5. The functiony(x,t)=(15.0cm)cos(ττx-15ττt), with x in meters and t in seconds, describes a wave on a taut string. What is the transverse speed for a point on the string at an instant when that point has the displacement y=+12.0cm?

    Found on Page 472
  6. A sinusoidal wave of frequency 500 Hzhas a speed of 350 m/s . (a)How far apart are two points that differ in phase byπ/3rad ? (b)What is the phase difference between two displacements at a certain point at times 1.00 msapart?

    Found on Page 473
  7. The equation of a transverse wave on a string isy=(2.0mm)sin[20m-1x-600s-1t] . The tension in the string is 15 N . (a)What is the wave speed? (b)Find the linear density of this string in grams per meter.

    Found on Page 473
  8. A stretched string has a mass per unit length of5.00 g/cmand a tension of 10.0N. A sinusoidal wave on this string has amplitude of 0.12mmand a frequency of 100 Hzand is traveling in the negative direction of an xaxis. If the wave equation is of the form y(x,t)=ymsin(kx±ωt), (a)What is ym, (b)What is k , (c)What is ω, and (d)What is the correct choice of sign in front of ω?

    Found on Page 473
  9. The speed of a transverse wave on a string is170m/swhen the string tension is 120N. To what value must the tension be changed to raise the wave speed to180m/s?

    Found on Page 473
  10. The linear density of a string is1.6×10-4kg/m. A transverse wave on the string is described by the equationy=(0.021m)sin[2.0m-1x+30s-1t]. (a)What are the wave speed and (b) What is the tension in the string?

    Found on Page 473

Related Physics Textbooks with Solutions

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.