Americas
Europe
Q15P
Expert-verifiedIn Figure 5.72 and . The kinetic coefficient of friction between and the floor is and that between and the floor is . You push with a force of magnitude . (a) What is the acceleration of the center of mass? (b) What is the magnitude of the force that exerts on ?
(a) The acceleration of the center of mass is .
(b) The magnitude of the force that exerts on is .
The given data can be listed below as:
The coefficient of friction is described as the ratio between the friction and the normal force. However, the coefficient of friction mainly depends on surface roughness and nature of the material used.
The equation of the net force is expressed as:
Here, is the net force, F is the force required to push the masses, is the coefficient of friction between the floor and the first mass, is the mass of the first mass, g is the acceleration due to gravity, is the coefficient of friction between the floor and the second mass and is the mass of the second mass.
Substitute the values in the above equation.
The equation of the acceleration of the center of mass is expressed as:
Here, a is the acceleration of the center of mass, is the net force, is the mass of the first mass and is the mass of the second mass.
Substitute the values in the above equation.
Thus, the acceleration of the center of mass is .
The equation of the magnitude of the force that the first mass exerts on the second mass is expressed as:
Here, is the magnitude of the force that the first mass exerts on the second mass, a is the acceleration of the center of mass, g is the acceleration due to gravity, is the coefficient of friction between the floor and the second mass and is the mass of the second mass.
Substitute the values in the above equation.
Thus, the magnitude of the force that exerts on is .
94% of StudySmarter users get better grades.
Sign up for free