Suggested languages for you:

Americas

Europe

Q16E

Expert-verifiedFound in: Page 518

Book edition
2nd Edition

Author(s)
Randy Harris

Pages
633 pages

ISBN
9780805303087

**Determine the approximate ratio of the diameter of a uranium nucleus** $(A=238)$** to that of beryllium nucleus $(A=9)$**

The ratio of the diameter of uranium nucleus to that of beryllium nucleus is $2.98$ .

Mass number of Uranium nucleus $=238$.

Mass number of beryllium nucleus $=9$.

**The radius of uranium is given as, ** ${r}{=}{{A}}^{1/3}\left({R}_{0}\right)$**.**

**Here ** ${A}$** is the mass number and ${{R}}_{{0}}$** ** is a constant its value is ** ${1}{.2}{\times}{{10}}^{-15}{}{\text{m}}$**.**

$9$Substitute $9$ for mass number $A$ of uranium nucleus in the above equation.

$\begin{array}{l}{r}_{U}={A}^{1/3}\left({R}_{0}\right)\\ {r}_{U}={238}^{1/3}\left({R}_{0}\right)\end{array}$

The radius of a beryllium nucleus is given as, ${r}_{Be}={A}^{1/3}\left({R}_{0}\right)$ .

Substitute for mass number $A$ of beryllium nucleus in the above equation.

$\begin{array}{l}{r}_{Be}={A}^{1/3}\left({R}_{0}\right)\\ {r}_{Be}={9}^{1/3}\left({R}_{0}\right)\end{array}$

The ratio of the diameter of uranium nucleus to that of beryllium nucleus is given as, .

$\frac{{D}_{UJ}}{{D}_{{B}_{e}}}=\frac{2\left({r}_{UJ}\right)}{2\left({r}_{{B}_{e}e}\right)}$

Substitute ${238}^{1/3}\left({R}_{0}\right)$ for ${r}_{U}$ and ${9}^{1/3}\left({R}_{0}\right)$ for ${r}_{Be}$ in the above equation.

$\begin{array}{c}\frac{{D}_{u}}{{D}_{ze}}=\frac{2\left({r}_{l}\right)}{2\left({r}_{{R}_{k}}\right)}\\ \frac{{D}_{u}}{{D}_{ze}}=\frac{2\left({238}^{1/3}{R}_{0}\right)}{2\left({9}^{1/3}{R}_{0}\right)}\\ \frac{{D}_{u}}{{D}_{ze}}=2.98\end{array}$

94% of StudySmarter users get better grades.

Sign up for free