### Select your language

Suggested languages for you:

Americas

Europe

Q. 42

Expert-verified
Found in: Page 156

### Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

Book edition 4th
Author(s) Randall D. Knight
Pages 1240 pages
ISBN 9780133942651

### Answers without the blur.

Just sign up for free and you're in.

# Seat belts and air bags save lives by reducing the forces exerted on the driver and passengers in an automobile collision. Cars are designed with a “crumple zone” in the front of the car. In the event of an impact, the passenger compartment decelerates over a distance of about $1m$as the front of the car crumples. An occupant restrained by seat belts and air bags decelerates with the car. By contrast, an unrestrained occupant keeps moving forward with no loss of speed (Newton’s first law!) until hitting the dashboard or windshield. These are unyielding surfaces, and the unfortunate occupant then decelerates over a distance of only about $5mm$. a. A $60kg$ person is in a head-on collision. The car’s speed at impact is $15m/s$. Estimate the net force on the person if he or she is wearing a seat belt and if the air bag deploys.b. Estimate the net force that ultimately stops the person if he or she is not restrained by a seat belt or air bag

(a) The net force on the person if he/she is wearing a seat belt and if air bag deploy is $-6750N$

(b) The net force that stop the person if he/she is not restrained is $-1.35×{10}^{6}N$

See the step by step solution

## Step 1 : Given Information

Mass of the person$\left(m\right)=60kg$

Initial velocity of the car$\left({v}_{i}\right)=15m/s$

## Step 2 : Calculation of A

Formula used :

The constant acceleration, the third equation of the kinematics is used. The initial and final velocities can be related with the following relation.

${v}_{f}^{2}={v}_{i}^{2}+2a∆x\left(I\right)$

The final velocity $\left({v}_{f}\right)$is zero,

Therefore acceleration is given by

The force acting on the passenger is given by

Conclusion :

When the air bag is deployed, and the seat belt is hold the stopping distance will be

$∆x=1$

using the equation $\left(III\right)$

Force can be calculated by substituting the values of mass of the person, initial velocity of the car and the stopping distance.

Negative sign indicates that it is pushing the passenger back to the seat.

The net force on the person if he/she is wearing a seat belt and if air bag deploy is$-6750N$

## Step 3 : Calculation of B

When there are no restraints, then the stopping distance will be equal to

$∆x=5mmor∆x=0.005m$

Using the equation $\left(III\right)$

Force can be calculated by substituting the values of mass of the person, initial velocity of the car and the stopping distance.

This force is much larger than the restrained case.

Conclusion :

The net force that stops the person if he/she is not restrained is $-1.35×{10}^{6}N$

### Want to see more solutions like these?

Sign up for free to discover our expert answers

## Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.