Suggested languages for you:

Americas

Europe

Q.37

Expert-verifiedFound in: Page 1296

Book edition
9th Edition

Author(s)
Raymond A. Serway, John W. Jewett

Pages
1624 pages

ISBN
9781133947271

a. What downward transitions are possible for a sodium atom in the $6s$ state?

b. What are the wavelengths of the photons emitted in each of these transitions?

(a) $6s\to 5p,6s\to 4p$ and $6s\to 3p$

(b) $\u2206E=0.17eV$

The allowed transitions are determined form the following usual selection rules

$\u2206L=\pm 1\phantom{\rule{0ex}{0ex}}\u2206S=0\phantom{\rule{0ex}{0ex}}\u2206J=0,\pm 1$

If the above selection rules are not satisfied, no other transitions are allowed between the energy levels.

The following diagram shows $\left[Ne\right]3s$ground state of sodium atom and some are in excited state.

The selection rule for a transition is

$\u2206l=\pm 1$

Now for $s$ state $l=0$. The transition is possible if the lower state has $l$ value as $1$ . But for $6s$, there are possible lower states having $l=1$ are $5p,4p$ and $3p$.

The possible transitions are,

$6s\to 5p,6s\to 4p$ and $6s\to 3p$

Wavelength of photon emitted is

$\lambda =\frac{hc}{\u2206E}$

Rearranging the equation (1) for $\u2206E$.

$\u2206E=\frac{hc}{\lambda}$ ......(1)

Here, $h$ is Plank's constant $\left(4.14\times {10}^{-15}eV.s\right)$ and $c$ is speed of light in vacuum $\left(3\times {10}^{8}m/s\right)$.

The energy level difference in the transition, $6s\to 5p$ is,

$\u2206E={E}_{6s}-{E}_{5p}$

Substitute $4.51eV$ and ${E}_{6s}$ and $4.34eV$ for ${E}_{5p}$ in the above equation,

$\u2206E=4.51eV-4.34eV\phantom{\rule{0ex}{0ex}}=0.17eV$

Substitute $4.14\times {10}^{-15}eV.s$ for $h,3\times {10}^{8}m/s$ for $c$ and $0.17eV$ for $\lambda $ in the above equation.

localid="1649071820977" ${\lambda}_{6s\to 5p}=\frac{\left(4.14\times {10}^{-15}eVs\right)\left(3\times {10}^{8}m/s\right)}{\left(0.17eV\right)}\phantom{\rule{0ex}{0ex}}=\left(7300\times {10}^{-9}m\right)\left(\frac{{10}^{9}nm}{1.0m}\right)\phantom{\rule{0ex}{0ex}}=7300nm$

Therefore the wavelength is $7300nm$

The energy level difference in the transition $6s\to 4p$ is,

localid="1648557023475" $\u2206E={E}_{6s}-{E}_{4p}$

Substitute $4.51eV$ for ${E}_{6s}$ and $3.75eV$ for ${E}_{4p}$ in the above equation.

$\u2206E={E}_{6s}-{E}_{4p}\phantom{\rule{0ex}{0ex}}=4.51eV-3.75eV\phantom{\rule{0ex}{0ex}}=0.76eV$

Substitute localid="1648557182261" $4.14\times {10}^{-15}eV.s$ for $h,3\times {10}^{8}m/s$ for $c$ and $0.76eV$ for $\lambda $ in the above equation.

localid="1648557427578" ${\lambda}_{6s\to 5p}=\frac{\left(4.14\times {10}^{-15}eVs\right)\left(3\times {10}^{8}m/s\right)}{\left(0.7eV\right)}\phantom{\rule{0ex}{0ex}}=\left(1634\times {10}^{-9}m\right)\left({10}^{9}nm/m\right)\phantom{\rule{0ex}{0ex}}=1634nm$

Therefore, the wavelength is $1634nm$.

The energy level difference in the transition $6s\to 3p$ is,

$\u2206E={E}_{6s}-{E}_{4p}$

Substitute $4.51eV$ for ${E}_{5s}$ and $2.104eV$ for ${E}_{3p}$ in the above equation.

localid="1648557169920" $\u2206E=4.51eV-2.104eV\phantom{\rule{0ex}{0ex}}=2.406eV$

Substitute $4.14\times {10}^{-15}eV.s$ for $h,3\times {10}^{8}m/s$ for $c$ and $2.406eV$ for $\lambda $ in the above equation.

${\lambda}_{6s\to 5p}=\frac{\left(4.14\times {10}^{-15}eVs\right)\left(3\times {10}^{8}m/s\right)}{\left(2.406eV\right)}\phantom{\rule{0ex}{0ex}}=\left(516.2\times {10}^{-9}m\right)\left({10}^{9}nm/m\right)\phantom{\rule{0ex}{0ex}}=516.2nm$

Therefore, the wavelength is $516.2nm$.

94% of StudySmarter users get better grades.

Sign up for free