Suggested languages for you:

Americas

Europe

Q12 P

Expert-verifiedFound in: Page 439

Book edition
9th Edition

Author(s)
Raymond A. Serway, John W. Jewett

Pages
1624 pages

ISBN
9781133947271

**The free-fall acceleration on the surface of the Moon is about one-sixth that on the surface of the Earth. The radius of the Moon is about $0.250{R}_{E}$ $({R}_{E}=\mathbf{Earths}\text{}\mathbf{radius})=6.37\times {10}^{6}\text{m.}$****. Find the ratio of their average densities ${\rho}_{Moon/{\rho}_{Earth}}$****.**

Thus, the required ratio of their average densities $\frac{{\rho}_{Moon}}{{\rho}_{Earth}}=0.6667$

An object at a distance *h* above the Earth’s surface experiences a gravitational force of magnitude *mg,* where *g* is the free-fall acceleration at that elevation:

$g=\frac{G{M}_{E}}{{r}^{2}}=\frac{G{M}_{E}}{{\left(R{}_{E}+h\right)}^{2}}$

And force is given by:

$F=\frac{G{M}_{E}{m}_{a}}{{\left(R{}_{E}+r\right)}^{2}}$

${M}_{E}$ is the mass of the Earth and ${R}_{E}$is its radius. Therefore, the weight of an object decreases as the object moves away from the Earth’s surface.

Let free fall acceleration of moon is ${g}_{Moon}$ .

Let free fall acceleration of earth is ${g}_{Earth}$ .

Radius of moon ${R}_{Moon}$

it is Given that in question:

${g}_{Moon}=\frac{{g}_{Earth}}{6}$

According to Concept, we have

$\frac{G{m}_{Moon}}{{{R}_{Moon}}^{2}}=\frac{G{m}_{Earth}}{6\times {{R}_{Earth}}^{2}}\phantom{\rule{0ex}{0ex}}\frac{\rho {}_{Moon}\times \frac{4}{3}\pi {{R}^{3}}_{Moon}}{{{R}_{Moon}}^{2}}=\frac{1}{6}\times \frac{\rho {}_{Earth}\times \frac{4}{3}\pi {{R}^{3}}_{E}}{{{R}_{E}}^{2}}.......\left(M=\rho V;V=\frac{4}{3}\pi {R}^{3}\right)\phantom{\rule{0ex}{0ex}}\rho {}_{Moon}\times {R}_{Moon}=\frac{\rho {}_{Earth}\times {R}_{E}}{6}\phantom{\rule{0ex}{0ex}}\frac{{\rho}_{Moon}}{{\rho}_{Earth}}=\frac{{R}_{E}}{6{R}_{Moon}}\phantom{\rule{0ex}{0ex}}\frac{{\rho}_{Moon}}{{\rho}_{Earth}}=\frac{{R}_{E}}{6\times 0.250{R}_{E}}.........\left({R}_{Moon}=0.250{R}_{E}\right)\phantom{\rule{0ex}{0ex}}\frac{{\rho}_{Moon}}{{\rho}_{Earth}}=\frac{1}{1.5}\phantom{\rule{0ex}{0ex}}\frac{{\rho}_{Moon}}{{\rho}_{Earth}}=0.6667$

Thus the required ratio of their average densities $\frac{{\rho}_{Moon}}{{\rho}_{Earth}}=0.6667$

94% of StudySmarter users get better grades.

Sign up for free