• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Chapter 10: Rotation of a Rigid Object About a Fixed Axis

Expert-verified
Physics For Scientists & Engineers
Pages: 293 - 334

Answers without the blur.

Just sign up for free and you're in.

Illustration

52 Questions for Chapter 10: Rotation of a Rigid Object About a Fixed Axis

  1. Question: A toy airplane hangs from the ceiling at the bottom end of a string. You turn the airplane many times to wind up the string clockwise and release it. The airplane starts to spin counter clockwise, slowly at first and then faster and faster. Take counter clockwise as the positive sense and assume friction is negligible. When the string is entirely unwound, the airplane has its maximum rate of rotation. (i) At this moment, is its angular acceleration (a) positive, (b) negative, or (c) zero? (ii) The airplane continues to spin, winding the string counter clockwise as it slows down. At the moment it momentarily stops, is its angular acceleration (a) positive, (b) negative, or (c) zero?

    Found on Page 323
  2. A solid aluminum sphere of radius R has moment of inertia I about an axis through its center. Will the moment of inertia about a central axis of a solid aluminum sphere of radius 2R be (a) 2I, (b) 4I, (c) 8I, (d) 16I, or (e) 32I ?

    Found on Page 323
  3. Found on Page 324
  4. A discus thrower (Fig. P4.33, page 104) accelerates a discus from rest to a speed of 25.0 m/s by whirling it through 1.25 rev. Assume the discus moves on the arc of a circle 1.00 m in radius. (a) Calculate the final angular speed of the discus. (b) Determine the magnitude of the angular acceleration of the discus, assuming it to be constant. (c) Calculate the time interval required for the discus to accelerate from rest to 25.0 m/s.

    Found on Page 325
  5. Question: A cyclist rides a bicycle with a wheel radius of 0.500 m across campus. A piece of plastic on the front rim makes a clicking sound every time it passes through the fork. If the cyclist counts 320 clicks between her apartment and the cafeteria, how far has she travelled? (a) 0.50 km (b) 0.80 km (c) 1.0 km (d) 1.5 km (e) 1.8 km

    Found on Page 323
  6. A disk 8.00 cm in radius rotates at a constant rate of 1200 rev / min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.

    Found on Page 293
  7. A straight ladder is leaning against the wall of a house. The ladder has rails 4.90 m long, joined by rungs 0.410 m long. Its bottom end is on solid but sloping ground so that the top of the ladder is 0.690 m to the left of where it should be, and the ladder is unsafe to climb. You want to put a flat rock under one foot of the ladder to compensate for the slope of the ground. (a) What should be the thickness of the rock? (b) Does using ideas from this chapter make it easier to explain the solution to part (a)? Explain your answer.

    Found on Page 326
  8. A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 1.70m/s2. The car makes it one-quarter of the way around the circle before it skids off the track. From these data, determine the coefficient of static friction between the car and the track.

    Found on Page 326
  9. A small object with mass 4.00 kg moves counter-clockwise with constant angular speed 1.50 rad/s in a circle of radius 3.00 m centered at the origin. It starts at the point with position vector 3.00i^m. It then undergoes an angular displacement of 9.00 rad. (a) What is its new position vector? Use unit-vector notation for all vector answers. (b) In what quadrant is the particle located, and what angle does its position vector make with the positive x axis? (c) What is its velocity? (d) In what direction is it moving? (e) What is its acceleration? (f) Make a sketch of its position, velocity, and acceleration vectors. (g) What total force is exerted on the object?

    Found on Page 326
  10. Question: Consider an object on a rotating disk a distance r from its centre, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal acceleration and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.

    Found on Page 323

Related Physics Textbooks with Solutions

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.