StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

Q1.

Expert-verifiedFound in: Page 131

Book edition
7th

Author(s)
Douglas C. Giancoli

Pages
978 pages

ISBN
978-0321625922

**A child sitting 1.20 m from the center of a merry-go round moves with a speed of $\mathbf{1}\mathbf{.}\mathbf{10}\mathbf{m}\mathbf{/}\mathbf{s}$****. ****Calculate ( a) the centripetal acceleration of the child and (b) the net horizontal force exerted on the child $\left(\mathbf{mass}=\mathbf{22}\mathbf{.}\mathbf{5}\mathbf{kg}\right)$**

(a) The centripetal acceleration of the child is $1.01\mathrm{m}/{\mathrm{s}}^{2}$.

(b) The net horizontal force exerted on the child is $22.725\mathrm{N}$.

** **

**The child is rotating on the merry-go-round. The centripetal force acts on the child during the circular motion.**** The centripetal acceleration depends on the speed of the merry-go-round and the distance between the centre of the merry-go-round and the child.**

The given data can be listed below as,

- The
**distance between the centre of the merry-go-round and the child is, $r=1.20\mathrm{m}$****.** - The speed of the merry-go-round is, $v=1.10\mathrm{m}/\mathrm{s}$.
- The mass of the child is, $m=22.5\mathrm{kg}$.

** **

The centripetal acceleration can be expressed as,

${a}_{\mathrm{c}}=\frac{{v}^{2}}{r}$

Here, *v* is the speed of the merry-go-round, *r* is the **distance between the centre of the merry-go-round and the child.**

Substitute the values in the above equation.

$\begin{array}{c}{a}_{\mathrm{c}}=\frac{{\left(1.10\mathrm{m}/\mathrm{s}\right)}^{2}}{1.20\mathrm{m}}\\ \approx 1.01\mathrm{m}/{\mathrm{s}}^{2}\end{array}$

Thus, the centripetal acceleration of the child is $1.01\mathrm{m}/{\mathrm{s}}^{2}$.

The net horizontal force can be expressed as,

${F}_{\mathrm{H}}=m{a}_{\mathrm{c}}$

Substitute the values in the above equation.

$\begin{array}{c}{F}_{\mathrm{H}}=22.5\mathrm{kg}\times 1.01\mathrm{m}/{\mathrm{s}}^{2}\left(\frac{1\mathrm{N}}{1\mathrm{kg}\xb7\mathrm{m}/{\mathrm{s}}^{2}}\right)\\ =22.725\mathrm{N}\end{array}$

Thus, the net horizontal force acts on the child is $22.725\mathrm{N}$.

94% of StudySmarter users get better grades.

Sign up for free