Americas
Europe
8-13P
Expert-verifiedThe number of revolutions per minute is 33422.5 rpm.
The distance from the axis of rotation is \({\rm{r}} = 8\;{\rm{cm}}\).
The acceleration is \({\rm{a}} = 100000{\rm{g}}\)
In this problem, to calculate the revolutions per minute of a centrifuge, the relation between radial acceleration and angular velocity will be utilized.
The relation to calculate the revolutions per minute is given by:
\(\omega = \sqrt {\frac{a}{r}} \)
Here, r is the radius of the wheel and \(\omega \) is the angular speed.
On plugging the values in the above relation, you get:
\(\begin{aligned}{l}\omega &= \sqrt {\frac{{100000 \times 9.8\;{\rm{m/}}{{\rm{s}}^2}}}{{\left( {8\;{\rm{cm}} \times \frac{{1\;{\rm{m}}}}{{100\;{\rm{cm}}}}} \right)}}} \\\omega &= \left( {3500\;{\rm{rad/s}} \times \frac{{60\;{\rm{rpm}}}}{{2\pi \;{\rm{rad/s}}}}} \right)\\\omega &= 33422.5\;{\rm{rpm}}\end{aligned}\)
Thus, \(\omega = 33422.5\;{\rm{rpm}}\) is the correct answer.
94% of StudySmarter users get better grades.
Sign up for free