StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

Q11P

Expert-verifiedFound in: Page 230

Book edition
7th

Author(s)
Douglas C. Giancoli

Pages
978 pages

ISBN
978-0321625922

The results of the values of the positions of the pivot point are (a) \(x = 2.25\;{\rm{m}}\) and (b) \(x' = 2.5\;{\rm{m}}\).

The mass of the adult is \(M = 75\;{\rm{kg}}\).

The mass of the child is \(m = 25\;{\rm{kg}}\).

The mass of the board is \({m_{\rm{B}}} = 15\;{\rm{kg}}\).

The length of the board is \(l = 9\;{\rm{m}}\).

**In this problem, the upward force F_{P} does not exert any torque about the pivot point. Also, the pivot must be kept in such a place where the net torque on the board is equal to zero.**

The following is the free body diagram.

The relation to calculate the net torque can be written as:

** **

\(\begin{array}{c}\sum \tau = 0\\\left( {Mg \times x} \right) - \left( {mg \times \left( {l - x} \right)} \right) = 0\end{array}\)** **

Here, \(g\) is the gravitational acceleration and \(x\) is the distance from the left end point to point P.* *

On plugging the values in the above relation, you get:

\(\begin{array}{c}\left( {75\;{\rm{kg}} \times 9.8\;{\rm{m/}}{{\rm{s}}^2} \times x} \right) - \left( {25\;{\rm{kg}} \times 9.8\;{\rm{m/}}{{\rm{s}}^2} \times \left( {9\;{\rm{m}} - x} \right)} \right) = 0\\x = 2.25\;{\rm{m}}\end{array}\)

Thus, \(x = 2.25\;{\rm{m}}\) is the position of the pivot point from the adult.

The relation to calculate the pivot point can be written as:

** **

\(\begin{array}{c}\sum \tau = 0\\\left( {Mg \times x'} \right) - \left( {mg \times \left( {l - x'} \right)} \right) - \left( {{m_{\rm{B}}}g \times \left( {\frac{l}{2} - x'} \right)} \right) = 0\end{array}\)** **

On plugging the values in the above relation, you get:

\(\begin{array}{c}\left[ \begin{array}{l}\left( {75\;{\rm{kg}} \times 9.8\;{\rm{m/}}{{\rm{s}}^2} \times x'} \right) - \\\left( {25\;{\rm{kg}} \times 9.8\;{\rm{m/}}{{\rm{s}}^2} \times \left( {9\;{\rm{m}} - x'} \right)} \right) - \left( {15\;{\rm{kg}} \times 9.8\;{\rm{m/}}{{\rm{s}}^2} \times \left( {\frac{{9\;{\rm{m}}}}{2} - x'} \right)} \right)\end{array} \right] = 0\\x' = 2.5\;{\rm{m}}\end{array}\)

Thus, \(x' = 2.5\;{\rm{m}}\) is the distance of the pivot point from the adult.

94% of StudySmarter users get better grades.

Sign up for free