Suggested languages for you:

Americas

Europe

Q106P

Expert-verified
Found in: Page 1158

### University Physics with Modern Physics

Book edition 14th edition
Author(s) Hugh D. Young, Roger A. Freedman
Pages 1596 pages
ISBN 9780321973610

# An Object at an Angle. A 16.0cm long pencil is placed at a 45.0° angle, with its center 15.0cm above the optic axis and 45.0 cm from a lens with a 20.0cm focal length as shown in Fig. P34.106. (Note that the figure is not drawn to scale.) Assume that the diameter of the lens is large enough for the paraxial approximation to be valid. (a) Where is the image of the pencil? (Give the location of the images of the points and on the object, which are located at the eraser, point, and center of the pencil, respectively.) (b) What is the length of the image (that is, the distance between the images of points and )? (c) Show the orientation of the image in a sketch.

1. The location of images of the points A,B and C are 33.0 cm , 40.7 cm and 36.0 cm .
2. The length of the image is 16.46 cm.
3. The orientation of the image of the pencil is shown in the diagram below.
See the step by step solution

## Step 1: Given Data

Length of the pencil: 16.0 cm

Inclination of pencil: $45°$

Distance of midpoint from the axis: 15.0 cm

Distance of midpoint from the lens: 45.0 cm

Focal length: 20.0 cm

## Step 2: Define the focal length.

The focal length of a lens is the perpendicular distance of the focal plane from the optical center of the lens, along the principal axis.

The relation between the distance of object s , the distance of the image, and the focal length $f$ is

$\frac{1}{f}=\frac{1}{s}+\frac{1}{s\text{'}}$

## Step 3: Determine the location of image.

The distance of Image of points A,B and C from the lens are:

$s\text{'}=\frac{sf}{s-f}$

For point the focal length $f=20\mathrm{cm}$and distance of object s is $45\mathrm{cm}+\left(8\mathrm{cm}\right)\mathrm{cos}45°=50.7\mathrm{cm}$.

So,

role="math" localid="1663930315176" ${s}_{A}^{\text{'}}=\frac{\left(50.7\mathrm{cm}\right)\left(20\mathrm{cm}\right)}{50.7\mathrm{cm}-20\mathrm{cm}}\phantom{\rule{0ex}{0ex}}=33.0\mathrm{cm}$

For point $B$ the focal length role="math" localid="1663929982581" $f=20\mathrm{cm}$and distance of object s is $45cm-\left(8cm\right)\mathrm{cos}45°=39.3cm.$

So, ${s}_{B}^{\text{'}}=\frac{\left(39.3\mathrm{cm}\right)\left(20\mathrm{cm}\right)}{39.3\mathrm{cm}-20\mathrm{cm}}\phantom{\rule{0ex}{0ex}}=40.7\mathrm{cm}$

For point B the focal length $f=20cm$ and distance of object $s$ is 45.0 cm.

So,${s}_{C}^{\text{'}}=\frac{\left(45\mathrm{cm}\right)\left(20\mathrm{cm}\right)}{45\mathrm{cm}-20\mathrm{cm}}\phantom{\rule{0ex}{0ex}}=36.0\mathrm{cm}$

Hence, the location of images of the points A,B and C are 33.0cm, 40.7 cm and 36.0 cm

## Step 4: Determine the length of image.

The height of image at points A and B are:

${h}_{A}^{\text{'}}=\frac{s\text{'}}{s}{h}_{A}\phantom{\rule{0ex}{0ex}}=\frac{33\mathrm{cm}}{45\mathrm{cm}}\left(15\mathrm{cm}-8\mathrm{cm}\left(\mathrm{sin}45°\right)\right)\phantom{\rule{0ex}{0ex}}=-6.85\mathrm{cm}\phantom{\rule{0ex}{0ex}}{h}_{B}^{\text{'}}=\frac{s\text{'}}{s}{h}_{B}\phantom{\rule{0ex}{0ex}}=\frac{40.7\mathrm{cm}}{39.3\mathrm{cm}}\left(15\mathrm{cm}-8\mathrm{cm}\left(\mathrm{sin}45°\right)\right)\phantom{\rule{0ex}{0ex}}=-21.4\mathrm{cm}$

Now, length of image is:

$L=\sqrt{{\left({\mathrm{s}}_{\mathrm{A}}^{\text{'}}-{\mathrm{s}}_{\mathrm{B}}^{\text{'}}\right)}^{2}{\left({\mathrm{h}}_{\mathrm{A}}-{\mathrm{h}}_{\mathrm{B}}\right)}^{2}}\phantom{\rule{0ex}{0ex}}=\sqrt{{\left(33\mathrm{cm}-40.7\mathrm{cm}\right)}^{2}{\left(6.87\mathrm{cm}-21.4\mathrm{cm}\right)}^{2}}\phantom{\rule{0ex}{0ex}}=16.46\mathrm{cm}$

Hence, the length of the image is $=16.46\mathrm{cm}$.

## Step 5: Determine orientation of the image.

The orientation of the image of the pencil is shown on the right side of the lens.