Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q11E

Expert-verified
University Physics with Modern Physics
Found in: Page 467
University Physics with Modern Physics

University Physics with Modern Physics

Book edition 14th edition
Author(s) Hugh D. Young, Roger A. Freedman
Pages 1596 pages
ISBN 9780321973610

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

A sinusoidal wave is propagating along a stretched string that lies along the x-axis. The displacement of the string as a function of time is graphed in Fig. E15.11 for particles at \({\bf{x}}{\rm{ }} = {\rm{ }}{\bf{0}}\) and at\(x = 0.0900 m\). (a) What is the amplitude of the wave? (b) What is the period of the wave? (c) You are told that the two points \({\bf{x}}{\rm{ }} = {\rm{ }}{\bf{0}}\) and \(x = 0.0900 m\) are within one wavelength of each other. If the wave is moving in the +x direction, determine the wavelength and the wave speed. (d) If instead the wave is moving in the –x direction, determine the wavelength and the wave speed. (e) Would it be possible to determine definitively the wavelengths in parts (c) and (d) if you were not told that the two points were within one wavelength of each other? Why or why not?

(a) The maximum \(y\) or amplitude is\(4\,mm\).

See the step by step solution

Step by Step Solution

Step 1: Given data

Fig. E15.11

Location of particles at \(x = 0\)and \(x = 0.0900 m\)

Step 2: Concept/ Formula used

Amplitude refers to the greatest displacement or distance that a point on a vibrating body or wave may move relative to its equilibrium location. It is equivalent to the vibration path's half-length.

Step 3: Calculation for Amplitude

(a)

From graph it is clear that the maximum displacement of wave relative to equilibrium distance is\(4\,mm\).

i.e. The maximum \(y\) or amplitude is \(4\,mm\).

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.